LOYOLA COLLEGE (AUTONOMOUS), CHENNAI – 600 034

B.Sc. DEGREE EXAMINATION – **PHYSICS**

THIRD SEMESTER – APRIL 2013

PH 3505/PH 3503 - THERMODYNAMICS

Date: 02/05/2013 Time: 9:00 - 12:00 Dept. No.

Max.: 100 Marks

 $(10 \times 2 = 20 \text{ marks})$

PART – A

Answer ALL the questions:

- 1. State the law of equipartition of energy.
- 2. What do you mean by Brownian motion?
- 3. Explain reversible process with an example.
- 4. What is meant by superfluidity?
- 5. State first law of thermodynamics.
- 6. Define the concept of entropy.
- 7. Define Gibbs function.
- 8. What is meant by second order phase transition? Give any two examples.
- 9. What is thermodynamic probability?
- 10. What are the characteristics of a black body radiation?

PART - B

Answer any FOUR questions:	(4 × 7.5 = 30 marks)		
11. (a) Define mean free path.	(2)		
(b) Derive an expression for the mean free path of molecules in a gas.	(5.5)		
12. (a) Derive Mayer's relation for the two specific heat capacities of a gas.	(5.5)		
(b) Calculate the specific heat capacity of air at constant volume, given the capacity of air at constant pressure is 960J kg ⁻¹ k ⁻¹ and density of air at	alculate the specific heat capacity of air at constant volume, given that the specific heat apacity of air at constant pressure is 960J kg ⁻¹ k ⁻¹ and density of air at NTP is 1.293 kg/m ³ . (2)		
13. (a) Prove that the change in entropy in a reversible process is zero.	(3.5)		
(b) Discuss Clausius inequality.	(4)		
14. Describe Temperature – Entropy diagram in the case of Carnot's cycle and hence arrive at an			
expression for the efficiency of the Carnot's engine.	(4+3.5)		
15. (a) What do you mean by micro and macro states?	(2.5+3)		
(b) Explain the term phase space.	(2)		

PART – C

Answ	ver any FOUR questions. $(4 \times 12.5 = 50 \text{ marks})$		
16.	(a) What do you understand by transport phenomena in a gas ?	(2)	
	(b) Derive an expression for the viscosity of a gas on the basis of transport pheno	an expression for the viscosity of a gas on the basis of transport phenomenon.	
		(10.5)	
17.	(a) Describe, with a suitable diagram, Linde's process of liquefying air.	(8.5)	
	(b) Write a brief note on HeliumII.	(4)	
18.	(a) Derive Clausius – Clapeyron latent heat equation.	(8.5)	
	(b) One mole of a perfect gas is expanded isothermally to twice its initial volume	. Calculate	
	the change in entropy ($R = 8.313 \text{ J mol}^{-1} \text{k}^{-1}$).	(4)	
19.	Give the theory of Joule – Kelvin effect and discuss its results.	(9.5+3)	
20.	(a) Discuss Bose – Einstein distribution law.	(5.5)	
	(b) Using it, derive Planck's radiation law for the black body radiation.	(7)	

\$\$\$\$\$\$